对PID三个参数,最牛逼的GIF图解
这几天一直在考虑如何能够把这一节的内容说清楚,对于PID而言应用并没有多大难度,按照基本的算法设计思路和成熟的参数整定方法,就算是没有经过特殊训练和培训的人,也能够在较短的时间内容学会使用PID算法。可问题是,如何能够透彻的理解PID算法,从而能够根据实际的情况设计出优秀的算法呢。通过讲述公式和基本原理肯定是最能说明问题的,可是这样的话怕是犯了“专家”的错误了。对于门槛比较低的技术人员来讲,依然不能透彻理解。可是说的入耳了,能不能透彻说明也是一个问题,所以斟酌了几天,整理了一下思路才开始完成PID系列文章的最后一篇。
我所说的最后一篇不代表PID的功能和发展就止步与此,仅仅是说明,透过这一些列的文章,基本上已经可以涵盖PID设计的要点,至于更深入的研究,就交给有需要的读者去做。
上一节中大致讲述了一下模糊算法。实际上模糊算法的很多概念在上一节中并没有深入的解释。举的例子也只是为了说明模糊算法的基本含义,真正的模糊算法是不能这么设计的,当然也不会这么简单。模糊算法的核心是模糊规则,如果模糊规则制定的出色,那么模糊算法的控制效率就高。其实这是智能算法的一般特性,规则是系统判断和处理的前提。那么就说说PID的规则该怎么制定。来源:
我们知道,模糊算法的本质是对PID的三个参数进行智能调节。那么首先要提出的问题是如何对PID的参数进行调节?这个问题其实是参数整定的问题,现实当中有很多整定方法。可是我们需要从根本上了解为什么这么整定,才能知道该如何建立数学模型进行分析。那么要回答如何整定参数的问题,就需要先明白PID参数的作用都是什么?对系统有什么影响?
我们从作用和副作用两个方面说明参数对系统的影响。
1.比例环节Kp,作用是加快系统的响应速度,提高系统的调节精度,副作用是会导致超调;
2.积分环节Ki,作用是消除稳态误差,副作用是导致积分饱和现象;
3.微分环节Kd,作用是改善系统的动态性能,副作用是延长系统的调节时间。
可以通过下面的GIF加深理解:
PID_Compensation_Animated.gif
Effects of varying PID parameters (Kp,Ki,Kd) on the step response of a system.
理解了上述问题,那么就可以“辩证施治,对症下药”了。比如说,如果系统响应速度慢,我们就加大Kp的取值,如果超调量过大我们就减小Kp的取值等等。可是问题这些语言的描述该如何用数学形式表达出来呢。我们所知道的,反馈系统的实质就是系统的输出量作为反馈量与系统的输入量进行作差,从而得到系统的误差e,那么这个误差e就能够反应目前系统所处的状态。误差e可以表明目前系统的输出状态到底偏离要求多少。而误差e的变化律ec,表示误差变化的速度。这样,我们可以根据这两个量的状态来分析三个参数此时应该如何取值,假如e为负方向比较大,ec也为负方向增大状态,此时比例环节要大一些,从而加快调节速度,而积分环节要小一些,甚至不加积分环节,从而防止负方向上出现饱和积分的现象。微分环节可以稍加一些,在不影响调节时间的情况下,起到改善系统动态性能的作用。
页:
[1]