找回密码
 注册

常用函数的导数表

2016-12-15 09:02| 发布者: halfsmoke| 查看: 1526| 评论: 0

摘要: ① C'=0(C为常数函数)② (x^n)'= nx^(n-1) (n∈R);熟记1/X的导数③ (sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2(cotx)'=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2(secx)'=tanx·secx(cscx)'=- ...
① C'=0(C为常数函数)
② (x^n)'= nx^(n-1) (n∈R);熟记1/X的导数
③ (sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
(cotx)'=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
⑤ (e^x)' = e^x
(a^x)' = (a^x)lna (ln为自然对数)
(Inx)' = 1/x(ln为自然对数)
(logax)' =x^(-1) /lna(a>0且a不等于1)
(x^1/2)'=[2(x^1/2)]^(-1)
(1/x)'=-x^(-2)
1

支持

反对

刚表态过的朋友 (1 人)

相关阅读

最新评论

招标网平台地图|Archiver|手机版|机械设计招标网 ( 京ICP备17072296号-4 )

GMT+8, 2025-1-24 13:56

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

返回顶部